Zookeeper 分布式锁

我们常说的锁是单进程多线程锁,在多线程并发编程中,用于线程之间的数据同步,保护共享资源的访问。而分布式锁,指在分布式环境下,保护跨进程、跨主机、跨网络的共享资源,实现互斥访问,保证一致性。

架构图

clipboard.png

左侧是zookeeper集群,locker是数据节点,node_1到node_n代表一系列的顺序节点。

右侧client_1至client_n代表客户端,Service代表需要互斥访问的服务。

总实现思路,是在获取锁的时候在locker节点下创建顺序节点,在释放锁的时候,把自己创建的节点删除。

流程图

clipboard.png

类图

代码实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
public interface DistributedLock {

/*
* 获取锁,如果没有得到就等待
*/
public void acquire() throws Exception;

/*
* 获取锁,直到超时
*/
public boolean acquire(long time, TimeUnit unit) throws Exception;

/*
* 释放锁
*/
public void release() throws Exception;


}
public class SimpleDistributedLockMutex extends BaseDistributedLock implements
DistributedLock {

//锁名称前缀,成功创建的顺序节点如lock-0000000000,lock-0000000001,...
private static final String LOCK_NAME = "lock-";

// zookeeper中locker节点的路径
private final String basePath;

// 获取锁以后自己创建的那个顺序节点的路径
private String ourLockPath;

private boolean internalLock(long time, TimeUnit unit) throws Exception {

ourLockPath = attemptLock(time, unit);
return ourLockPath != null;

}

public SimpleDistributedLockMutex(ZkClientExt client, String basePath){

super(client,basePath,LOCK_NAME);
this.basePath = basePath;

}

// 获取锁
public void acquire() throws Exception {
if ( !internalLock(-1, null) ) {
throw new IOException("连接丢失!在路径:'"+basePath+"'下不能获取锁!");
}
}

// 获取锁,可以超时
public boolean acquire(long time, TimeUnit unit) throws Exception {

return internalLock(time, unit);
}

// 释放锁
public void release() throws Exception {

releaseLock(ourLockPath);
}


}
public class BaseDistributedLock {

private final ZkClientExt client;
private final String path;
private final String basePath;
private final String lockName;
private static final Integer MAX_RETRY_COUNT = 10;

public BaseDistributedLock(ZkClientExt client, String path, String lockName){

this.client = client;
this.basePath = path;
this.path = path.concat("/").concat(lockName);
this.lockName = lockName;

}

// 删除成功获取锁之后所创建的那个顺序节点
private void deleteOurPath(String ourPath) throws Exception{
client.delete(ourPath);
}

// 创建临时顺序节点
private String createLockNode(ZkClient client, String path) throws Exception{
return client.createEphemeralSequential(path, null);
}

// 等待比自己次小的顺序节点的删除
private boolean waitToLock(long startMillis, Long millisToWait, String ourPath) throws Exception{

boolean haveTheLock = false;
boolean doDelete = false;

try {

while ( !haveTheLock ) {
// 获取/locker下的经过排序的子节点列表
List<String> children = getSortedChildren();

// 获取刚才自己创建的那个顺序节点名
String sequenceNodeName = ourPath.substring(basePath.length()+1);

// 判断自己排第几个
int ourIndex = children.indexOf(sequenceNodeName);
if (ourIndex < 0){ // 网络抖动,获取到的子节点列表里可能已经没有自己了
throw new ZkNoNodeException("节点没有找到: " + sequenceNodeName);
}

// 如果是第一个,代表自己已经获得了锁
boolean isGetTheLock = ourIndex == 0;

// 如果自己没有获得锁,则要watch比我们次小的那个节点
String pathToWatch = isGetTheLock ? null : children.get(ourIndex - 1);

if ( isGetTheLock ){
haveTheLock = true;

} else {

// 订阅比自己次小顺序节点的删除事件
String previousSequencePath = basePath .concat( "/" ) .concat( pathToWatch );
final CountDownLatch latch = new CountDownLatch(1);
final IZkDataListener previousListener = new IZkDataListener() {

public void handleDataDeleted(String dataPath) throws Exception {
latch.countDown(); // 删除后结束latch上的await
}

public void handleDataChange(String dataPath, Object data) throws Exception {
// ignore
}
};

try {
//订阅次小顺序节点的删除事件,如果节点不存在会出现异常
client.subscribeDataChanges(previousSequencePath, previousListener);

if ( millisToWait != null ) {
millisToWait -= (System.currentTimeMillis() - startMillis);
startMillis = System.currentTimeMillis();
if ( millisToWait <= 0 ) {
doDelete = true; // timed out - delete our node
break;
}

latch.await(millisToWait, TimeUnit.MICROSECONDS); // 在latch上await
} else {
latch.await(); // 在latch上await
}

// 结束latch上的等待后,继续while重新来过判断自己是否第一个顺序节点
}
catch ( ZkNoNodeException e ) {
//ignore
} finally {
client.unsubscribeDataChanges(previousSequencePath, previousListener);
}

}
}
}
catch ( Exception e ) {
//发生异常需要删除节点
doDelete = true;
throw e;
} finally {
//如果需要删除节点
if ( doDelete ) {
deleteOurPath(ourPath);
}
}
return haveTheLock;
}

private String getLockNodeNumber(String str, String lockName) {
int index = str.lastIndexOf(lockName);
if ( index >= 0 ) {
index += lockName.length();
return index <= str.length() ? str.substring(index) : "";
}
return str;
}

// 获取/locker下的经过排序的子节点列表
List<String> getSortedChildren() throws Exception {
try{

List<String> children = client.getChildren(basePath);
Collections.sort(
children, new Comparator<String>() {
public int compare(String lhs, String rhs) {
return getLockNodeNumber(lhs, lockName).compareTo(getLockNodeNumber(rhs, lockName));
}
}
);
return children;

} catch (ZkNoNodeException e){
client.createPersistent(basePath, true);
return getSortedChildren();
}
}

protected void releaseLock(String lockPath) throws Exception{
deleteOurPath(lockPath);
}

protected String attemptLock(long time, TimeUnit unit) throws Exception {

final long startMillis = System.currentTimeMillis();
final Long millisToWait = (unit != null) ? unit.toMillis(time) : null;

String ourPath = null;
boolean hasTheLock = false;
boolean isDone = false;
int retryCount = 0;

//网络闪断需要重试一试
while ( !isDone ) {
isDone = true;

try {
// 在/locker下创建临时的顺序节点
ourPath = createLockNode(client, path);
// 判断自己是否获得了锁,如果没有获得那么等待直到获得锁或者超时
hasTheLock = waitToLock(startMillis, millisToWait, ourPath);
} catch ( ZkNoNodeException e ) { // 捕获这个异常
if ( retryCount++ < MAX_RETRY_COUNT ) { // 重试指定次数
isDone = false;
} else {
throw e;
}
}
}
if ( hasTheLock ) {
return ourPath;
}

return null;
}


}
public class TestDistributedLock {

public static void main(String[] args) {

final ZkClientExt zkClientExt1 = new ZkClientExt("192.168.1.105:2181", 5000, 5000, new BytesPushThroughSerializer());
final SimpleDistributedLockMutex mutex1 = new SimpleDistributedLockMutex(zkClientExt1, "/Mutex");

final ZkClientExt zkClientExt2 = new ZkClientExt("192.168.1.105:2181", 5000, 5000, new BytesPushThroughSerializer());
final SimpleDistributedLockMutex mutex2 = new SimpleDistributedLockMutex(zkClientExt2, "/Mutex");

try {
mutex1.acquire();
System.out.println("Client1 locked");
Thread client2Thd = new Thread(new Runnable() {

public void run() {
try {
mutex2.acquire();
System.out.println("Client2 locked");
mutex2.release();
System.out.println("Client2 released lock");

} catch (Exception e) {
e.printStackTrace();
}
}
});
client2Thd.start();
Thread.sleep(5000);
mutex1.release();
System.out.println("Client1 released lock");

client2Thd.join();

} catch (Exception e) {

e.printStackTrace();
}

}

}
public class ZkClientExt extends ZkClient {

public ZkClientExt(String zkServers, int sessionTimeout, int connectionTimeout, ZkSerializer zkSerializer) {
super(zkServers, sessionTimeout, connectionTimeout, zkSerializer);
}

@Override
public void watchForData(final String path) {
retryUntilConnected(new Callable<Object>() {

public Object call() throws Exception {
Stat stat = new Stat();
_connection.readData(path, stat, true);
return null;
}

});
}

}