什么是分布式锁
概述
为了防止分布式系统中的多个进程之间相互干扰,我们需要一种分布式协调技术来对这些进程进行调度。而这个分布式协调技术的核心就是来实现这个分布式锁。
为什么要使用分布式锁
- 成员变量 A 存在 JVM1、JVM2、JVM3 三个 JVM 内存中
- 成员变量 A 同时都会在 JVM 分配一块内存,三个请求发过来同时对这个变量操作,显然结果是不对的
- 不是同时发过来,三个请求分别操作三个不同 JVM 内存区域的数据,变量 A 之间不存在共享,也不具有可见性,处理的结果也是不对的
注:该成员变量 A 是一个有状态的对象
如果我们业务中确实存在这个场景的话,我们就需要一种方法解决这个问题,这就是分布式锁要解决的问题
分布式锁应该具备哪些条件
- 在分布式系统环境下,一个方法在同一时间只能被一个机器的一个线程执行
- 高可用的获取锁与释放锁
- 高性能的获取锁与释放锁
- 具备可重入特性(可理解为重新进入,由多于一个任务并发使用,而不必担心数据错误)
- 具备锁失效机制,防止死锁
- 具备非阻塞锁特性,即没有获取到锁将直接返回获取锁失败
分布式锁的实现有哪些
- Memcached:利用 Memcached 的
add
命令。此命令是原子性操作,只有在key
不存在的情况下,才能add
成功,也就意味着线程得到了锁。 - Redis:和 Memcached 的方式类似,利用 Redis 的
setnx
命令。此命令同样是原子性操作,只有在key
不存在的情况下,才能set
成功。 - Zookeeper:利用 Zookeeper 的顺序临时节点,来实现分布式锁和等待队列。Zookeeper 设计的初衷,就是为了实现分布式锁服务的。
- Chubby:Google 公司实现的粗粒度分布式锁服务,底层利用了 Paxos 一致性算法。
通过 Redis 分布式锁的实现理解基本概念
分布式锁实现的三个核心要素:
加锁
最简单的方法是使用 setnx
命令。key
是锁的唯一标识,按业务来决定命名。比如想要给一种商品的秒杀活动加锁,可以给 key
命名为 “lock_sale_商品ID” 。而 value
设置成什么呢?我们可以姑且设置成 1
。加锁的伪代码如下:
1 | setnx(lock_sale_商品ID,1) |
当一个线程执行 setnx
返回 1
,说明 key
原本不存在,该线程成功得到了锁;当一个线程执行 setnx
返回 0
,说明 key
已经存在,该线程抢锁失败。
解锁
有加锁就得有解锁。当得到锁的线程执行完任务,需要释放锁,以便其他线程可以进入。释放锁的最简单方式是执行 del
指令,伪代码如下:
1 | del(lock_sale_商品ID) |
释放锁之后,其他线程就可以继续执行 setnx
命令来获得锁。
锁超时
锁超时是什么意思呢?如果一个得到锁的线程在执行任务的过程中挂掉,来不及显式地释放锁,这块资源将会永远被锁住(死锁),别的线程再也别想进来。所以,setnx
的 key
必须设置一个超时时间,以保证即使没有被显式释放,这把锁也要在一定时间后自动释放。setnx
不支持超时参数,所以需要额外的指令,伪代码如下:
1 | expire(lock_sale_商品ID, 30) |
综合伪代码如下:
1 | if(setnx(lock_sale_商品ID,1) == 1){ |
存在什么问题
以上伪代码中存在三个致命问题
setnx
和 expire
的非原子性
设想一个极端场景,当某线程执行 setnx
,成功得到了锁:
setnx
刚执行成功,还未来得及执行 expire
指令,节点 1 挂掉了。
这样一来,这把锁就没有设置过期时间,变成死锁,别的线程再也无法获得锁了。
怎么解决呢?setnx
指令本身是不支持传入超时时间的,set
指令增加了可选参数,伪代码如下:
1 | set(lock_sale_商品ID,1,30,NX) |
这样就可以取代 setnx
指令。
del
导致误删
又是一个极端场景,假如某线程成功得到了锁,并且设置的超时时间是 30 秒。
如果某些原因导致线程 A 执行的很慢很慢,过了 30 秒都没执行完,这时候锁过期自动释放,线程 B 得到了锁。
随后,线程 A 执行完了任务,线程 A 接着执行 del
指令来释放锁。但这时候线程 B 还没执行完,线程A实际上 删除的是线程 B 加的锁
。
怎么避免这种情况呢?可以在 del
释放锁之前做一个判断,验证当前的锁是不是自己加的锁。至于具体的实现,可以在加锁的时候把当前的线程 ID 当做 value
,并在删除之前验证 key
对应的 value
是不是自己线程的 ID。
加锁:
1 | String threadId = Thread.currentThread().getId() |
解锁:
1 | if(threadId .equals(redisClient.get(key))){ |
但是,这样做又隐含了一个新的问题,判断和释放锁是两个独立操作,不是原子性。
出现并发的可能性
还是刚才第二点所描述的场景,虽然我们避免了线程 A 误删掉 key
的情况,但是同一时间有 A,B 两个线程在访问代码块,仍然是不完美的。怎么办呢?我们可以让获得锁的线程开启一个守护线程,用来给快要过期的锁“续航”。
当过去了 29 秒,线程 A 还没执行完,这时候守护线程会执行 expire
指令,为这把锁“续命”20 秒。守护线程从第 29 秒开始执行,每 20 秒执行一次。
当线程 A 执行完任务,会显式关掉守护线程。
另一种情况,如果节点 1 忽然断电,由于线程 A 和守护线程在同一个进程,守护线程也会停下。这把锁到了超时的时候,没人给它续命,也就自动释放了。