什么是 Zookeeper

概述

ZooKeeper 是一种分布式协调服务,用于管理大型主机。在分布式环境中协调和管理服务是一个复杂的过程。ZooKeeper 通过其简单的架构和 API 解决了这个问题。ZooKeeper 允许开发人员专注于核心应用程序逻辑,而不必担心应用程序的分布式特性。

以下为 Zookeeper 的基本概念

Zookeeper 的数据模型

Zookeeper 的数据模型是什么样子呢?它很像数据结构当中的树,也很像文件系统的目录。

img

树是由节点所组成,Zookeeper 的数据存储也同样是基于节点,这种节点叫做 Znode

但是,不同于树的节点,Znode 的引用方式是路径引用,类似于文件路径:

1
2
/动物/猫
/汽车/宝马

这样的层级结构,让每一个 Znode 节点拥有唯一的路径,就像命名空间一样对不同信息作出清晰的隔离。

Znode 包含哪些元素

img

  • data:Znode 存储的数据信息。
  • ACL:记录 Znode 的访问权限,即哪些人或哪些 IP 可以访问本节点。
  • stat:包含 Znode 的各种元数据,比如事务 ID、版本号、时间戳、大小等等。
  • child:当前节点的子节点引用

这里需要注意一点,Zookeeper 是为读多写少的场景所设计。Znode 并不是用来存储大规模业务数据,而是用于存储少量的状态和配置信息,每个节点的数据最大不能超过 1MB

Zookeeper 的基本操作

创建节点

1
create

删除节点

1
delete

判断节点是否存在

1
exists

获得一个节点的数据

1
getData

设置一个节点的数据

1
setData

获取节点下的所有子节点

1
getChildren

这其中,existsgetDatagetChildren 属于读操作。Zookeeper 客户端在请求读操作的时候,可以选择是否设置 Watch

Zookeeper 的事件通知

我们可以把 Watch 理解成是注册在特定 Znode 上的触发器。当这个 Znode 发生改变,也就是调用了 createdeletesetData 方法的时候,将会触发 Znode 上注册的对应事件,请求 Watch 的客户端会接收到异步通知。

具体交互过程如下:

  • 客户端调用 getData 方法,watch 参数是 true。服务端接到请求,返回节点数据,并且在对应的哈希表里插入被 Watch 的 Znode 路径,以及 Watcher 列表。

img

  • 当被 Watch 的 Znode 已删除,服务端会查找哈希表,找到该 Znode 对应的所有 Watcher,异步通知客户端,并且删除哈希表中对应的 Key-Value。

img

Zookeeper 的一致性

Zookeeper 身为分布式系统协调服务,如果自身挂了如何处理呢?为了防止单机挂掉的情况,Zookeeper 维护了一个集群。如下图:

img

Zookeeper Service 集群是一主多从结构。

在更新数据时,首先更新到主节点(这里的节点是指服务器,不是 Znode),再同步到从节点。

在读取数据时,直接读取任意从节点。

为了保证主从节点的数据一致性,Zookeeper 采用了 ZAB 协议,这种协议非常类似于一致性算法 PaxosRaft

什么是 ZAB

Zookeeper Atomic Broadcast,有效解决了 Zookeeper 集群崩溃恢复,以及主从同步数据的问题。

ZAB 协议定义的三种节点状态

  • Looking :选举状态。
  • Following :Follower 节点(从节点)所处的状态。
  • Leading :Leader 节点(主节点)所处状态。

最大 ZXID

最大 ZXID 也就是节点本地的最新事务编号,包含 epoch 和计数两部分。epoch 是纪元的意思,相当于 Raft 算法选主时候的 term。

ZAB 的崩溃恢复

假如 Zookeeper 当前的主节点挂掉了,集群会进行崩溃恢复。ZAB 的崩溃恢复分成三个阶段:

Leader election

选举阶段,此时集群中的节点处于 Looking 状态。它们会各自向其他节点发起投票,投票当中包含自己的服务器 ID 和最新事务 ID(ZXID)。

img

接下来,节点会用自身的 ZXID 和从其他节点接收到的 ZXID 做比较,如果发现别人家的 ZXID 比自己大,也就是数据比自己新,那么就重新发起投票,投票给目前已知最大的 ZXID 所属节点。

img

每次投票后,服务器都会统计投票数量,判断是否有某个节点得到半数以上的投票。如果存在这样的节点,该节点将会成为准 Leader,状态变为 Leading。其他节点的状态变为 Following。

img

Discovery

发现阶段,用于在从节点中发现最新的 ZXID 和事务日志。或许有人会问:既然 Leader 被选为主节点,已经是集群里数据最新的了,为什么还要从节点中寻找最新事务呢?

这是为了防止某些意外情况,比如因网络原因在上一阶段产生多个 Leader 的情况。

所以这一阶段,Leader 集思广益,接收所有 Follower 发来各自的最新 epoch 值。Leader 从中选出最大的 epoch,基于此值加 1,生成新的 epoch 分发给各个 Follower。

各个 Follower 收到全新的 epoch 后,返回 ACK 给 Leader,带上各自最大的 ZXID 和历史事务日志。Leader 选出最大的 ZXID,并更新自身历史日志。

Synchronization

同步阶段,把 Leader 刚才收集得到的最新历史事务日志,同步给集群中所有的 Follower。只有当半数 Follower 同步成功,这个准 Leader 才能成为正式的 Leader。

自此,故障恢复正式完成。

ZAB 的数据写入

Broadcast

ZAB 的数据写入涉及到 Broadcast 阶段,简单来说,就是 Zookeeper 常规情况下更新数据的时候,由 Leader 广播到所有的 Follower。其过程如下:

  • 客户端发出写入数据请求给任意 Follower。
  • Follower 把写入数据请求转发给 Leader。
  • Leader 采用二阶段提交方式,先发送 Propose 广播给 Follower。
  • Follower 接到 Propose 消息,写入日志成功后,返回 ACK 消息给 Leader。
  • Leader 接到半数以上ACK消息,返回成功给客户端,并且广播 Commit 请求给 Follower

img

ZAB 协议既不是强一致性,也不是弱一致性,而是处于两者之间的单调一致性(顺序一致性)。它依靠事务 ID 和版本号,保证了数据的更新和读取是有序的。

Zookeeper 的应用场景

分布式锁

这是雅虎研究员设计 Zookeeper 的初衷。利用 Zookeeper 的临时顺序节点,可以轻松实现分布式锁。

服务注册和发现

利用 Znode 和 Watcher,可以实现分布式服务的注册和发现。最著名的应用就是阿里的分布式 RPC 框架 Dubbo。

共享配置和状态信息

Redis 的分布式解决方案 Codis,就利用了 Zookeeper 来存放数据路由表和 codis-proxy 节点的元信息。同时 codis-config 发起的命令都会通过 ZooKeeper 同步到各个存活的 codis-proxy。

此外,Kafka、HBase、Hadoop,也都依靠Zookeeper同步节点信息,实现高可用。