数据结构与算法 线性表-队列
「队列 Queue」是一种遵循先入先出(First In, First Out)规则的线性数据结构。顾名思义,队列模拟了排队现象,即新来的人不断加入队列的尾部,而位于队列头部的人逐个离开。
我们把队列的头部称为「队首」,尾部称为「队尾」,把将元素加入队尾的操作称为「入队」,删除队首元素的操作称为「出队」。
队列常用操作
队列的常见操作如下表所示。需要注意的是,不同编程语言的方法名称可能会有所不同。我们在此采用与栈相同的方法命名。
方法名 | 描述 | 时间复杂度 |
---|---|---|
push() | 元素入队,即将元素添加至队尾 | O(1) |
pop() | 队首元素出队 | O(1) |
peek() | 访问队首元素 | O(1) |
队列实现
为了实现队列,我们需要一种数据结构,可以在一端添加元素,并在另一端删除元素。因此,链表和数组都可以用来实现队列。
基于链表的实现
对于链表实现,我们可以将链表的「头节点」和「尾节点」分别视为队首和队尾,规定队尾仅可添加节点,而队首仅可删除节点。
push()
pop()
基于数组的实现
由于数组删除首元素的时间复杂度为 O(n) ,这会导致出队操作效率较低。然而,我们可以采用以下巧妙方法来避免这个问题。
我们可以使用一个变量 front
指向队首元素的索引,并维护一个变量 queSize
用于记录队列长度。定义 rear = front + queSize
,这个公式计算出的 rear
指向队尾元素之后的下一个位置。
基于此设计,**数组中包含元素的有效区间为 [front, rear - 1]**,进而:
- 对于入队操作,将输入元素赋值给
rear
索引处,并将queSize
增加 1 ; - 对于出队操作,只需将
front
增加 1 ,并将queSize
减少 1 ;
可以看到,入队和出队操作都只需进行一次操作,时间复杂度均为 O(1) 。
push()
pop()
你可能会发现一个问题:在不断进行入队和出队的过程中,front
和 rear
都在向右移动,当它们到达数组尾部时就无法继续移动了。为解决此问题,我们可以将数组视为首尾相接的「环形数组」。
对于环形数组,我们需要让 front
或 rear
在越过数组尾部时,直接回到数组头部继续遍历。这种周期性规律可以通过“取余操作”来实现。
以上实现的队列仍然具有局限性,即其长度不可变。然而,这个问题不难解决,我们可以将数组替换为动态数组,从而引入扩容机制。
队列典型应用
- 淘宝订单。购物者下单后,订单将加入队列中,系统随后会根据顺序依次处理队列中的订单。
- 各类待办事项。任何需要实现“先来后到”功能的场景,例如打印机的任务队列、餐厅的出餐队列等。队列在这些场景中可以有效地维护处理顺序。