数据结构与算法 非线性数据结构-堆
堆
「堆 Heap」是一种满足特定条件的完全二叉树,可分为两种类型:
- 「大顶堆 Max Heap」,任意节点的值 ≥ 其子节点的值;
- 「小顶堆 Min Heap」,任意节点的值 ≤ 其子节点的值;
堆作为完全二叉树的一个特例,具有以下特性:
- 最底层节点靠左填充,其他层的节点都被填满。
- 我们将二叉树的根节点称为「堆顶」,将底层最靠右的节点称为「堆底」。
- 对于大顶堆(小顶堆),堆顶元素(即根节点)的值分别是最大(最小)的。
堆常用操作
需要指出的是,许多编程语言提供的是「优先队列 Priority Queue」,这是一种抽象数据结构,定义为具有优先级排序的队列。
实际上,堆通常用作实现优先队列,大顶堆相当于元素按从大到小顺序出队的优先队列。从使用角度来看,我们可以将「优先队列」和「堆」看作等价的数据结构。
堆的常用操作见下表,方法名需要根据编程语言来确定。
方法名 | 描述 | 时间复杂度 |
---|---|---|
push() | 元素入堆 | O(logn) |
pop() | 堆顶元素出堆 | O(logn) |
peek() | 访问堆顶元素(大 / 小顶堆分别为最大 / 小值) | O(1) |
size() | 获取堆的元素数量 | O(1) |
isEmpty() | 判断堆是否为空 | O(1) |
在实际应用中,我们可以直接使用编程语言提供的堆类(或优先队列类)。
类似于排序算法中的“从小到大排列”和“从大到小排列”,我们可以通过修改 Comparator 来实现“小顶堆”与“大顶堆”之间的转换。
堆的实现
下文实现的是大顶堆。若要将其转换为小顶堆,只需将所有大小逻辑判断取逆(例如,将 ≥ 替换为 ≤ )。
完全二叉树非常适合用数组来表示,由于堆正是一种完全二叉树,我们将采用数组来存储堆。
当使用数组表示二叉树时,元素代表节点值,索引代表节点在二叉树中的位置。节点指针通过索引映射公式来实现。
具体而言,给定索引 i ,其左子节点索引为 2i + 1 ,右子节点索引为 2i + 2 ,父节点索引为 (i - 1) / 2(向下取整)。当索引越界时,表示空节点或节点不存在。
访问堆顶元素
堆顶元素即为二叉树的根节点,也就是列表的首个元素。
元素入堆
给定元素 val
,我们首先将其添加到堆底。添加之后,由于 val 可能大于堆中其他元素,堆的成立条件可能已被破坏。因此,需要修复从插入节点到根节点的路径上的各个节点,这个操作被称为「堆化 Heapify」。
考虑从入堆节点开始,从底至顶执行堆化。具体来说,我们比较插入节点与其父节点的值,如果插入节点更大,则将它们交换。然后继续执行此操作,从底至顶修复堆中的各个节点,直至越过根节点或遇到无需交换的节点时结束。
1
2
3
4
5
6
7
8
9
设节点总数为 n ,则树的高度为 O(logn) 。由此可知,堆化操作的循环轮数最多为 O(logn) ,元素入堆操作的时间复杂度为 O(logn) 。
堆顶元素出堆
堆顶元素是二叉树的根节点,即列表首元素。如果我们直接从列表中删除首元素,那么二叉树中所有节点的索引都会发生变化,这将使得后续使用堆化修复变得困难。为了尽量减少元素索引的变动,我们采取以下操作步骤:
- 交换堆顶元素与堆底元素(即交换根节点与最右叶节点);
- 交换完成后,将堆底从列表中删除(注意,由于已经交换,实际上删除的是原来的堆顶元素);
- 从根节点开始,从顶至底执行堆化;
顾名思义,从顶至底堆化的操作方向与从底至顶堆化相反,我们将根节点的值与其两个子节点的值进行比较,将最大的子节点与根节点交换;然后循环执行此操作,直到越过叶节点或遇到无需交换的节点时结束。
1
2
3
4
5
6
7
8
9
10
与元素入堆操作相似,堆顶元素出堆操作的时间复杂度也为 O(logn) 。
堆常见应用
- 优先队列:堆通常作为实现优先队列的首选数据结构,其入队和出队操作的时间复杂度均为 O(logn) ,而建队操作为 O(n) ,这些操作都非常高效。
- 堆排序:给定一组数据,我们可以用它们建立一个堆,然后不断地执行元素出堆操作,从而得到有序数据。
- 获取最大的 k 个元素:这是一个经典的算法问题,同时也是一种典型应用,例如选择热度前 10 的新闻作为微博热搜,选取销量前 10 的商品等。