数据结构与算法 排序算法-归并排序

「归并排序 Merge Sort」基于分治思想实现排序,包含“划分”和“合并”两个阶段:

  1. 划分阶段:通过递归不断地将数组从中点处分开,将长数组的排序问题转换为短数组的排序问题;
  2. 合并阶段:当子数组长度为 1 时终止划分,开始合并,持续地将左右两个较短的有序数组合并为一个较长的有序数组,直至结束;

归并排序的划分与合并阶段

算法流程

“划分阶段”从顶至底递归地将数组从中点切为两个子数组,直至长度为 1 ;

  1. 计算数组中点 mid ,递归划分左子数组(区间 [left, mid] )和右子数组(区间 [mid + 1, right] );
  2. 递归执行步骤 1. ,直至子数组区间长度为 1 时,终止递归划分;

“合并阶段”从底至顶地将左子数组和右子数组合并为一个有序数组。需要注意的是,从长度为 1 的子数组开始合并,合并阶段中的每个子数组都是有序的。

1
归并排序步骤

2
merge_sort_step2

3
merge_sort_step3

4
merge_sort_step4

5
merge_sort_step5

6
merge_sort_step6

7
merge_sort_step7

8
merge_sort_step8

9
merge_sort_step9

10
merge_sort_step10

观察发现,归并排序的递归顺序与二叉树的后序遍历相同,具体来看:

  • 后序遍历:先递归左子树,再递归右子树,最后处理根节点。
  • 归并排序:先递归左子数组,再递归右子数组,最后处理合并。

合并方法 merge() 代码中的难点包括:

  • 在阅读代码时,需要特别注意各个变量的含义nums 的待合并区间为 [left, right] ,但由于 tmp 仅复制了 nums 该区间的元素,因此 tmp 对应区间为 [0, right - left]
  • 在比较 tmp[i]tmp[j] 的大小时,还需考虑子数组遍历完成后的索引越界问题,即 i > leftEndj > rightEnd 的情况。索引越界的优先级是最高的,如果左子数组已经被合并完了,那么不需要继续比较,直接合并右子数组元素即可。

算法特性

  • 时间复杂度 O(n log n) 、非自适应排序 :划分产生高度为 log n 的递归树,每层合并的总操作数量为 n ,因此总体时间复杂度为 O(n log n) 。
  • 空间复杂度 O(n) 、非原地排序 :递归深度为 log n ,使用 O(log n) 大小的栈帧空间。合并操作需要借助辅助数组实现,使用 O(n) 大小的额外空间。
  • 稳定排序:在合并过程中,相等元素的次序保持不变。

链表排序

归并排序在排序链表时具有显著优势,空间复杂度可以优化至 O(1) ,原因如下:

  • 由于链表仅需改变指针就可实现节点的增删操作,因此合并阶段(将两个短有序链表合并为一个长有序链表)无需创建辅助链表。
  • 通过使用“迭代划分”替代“递归划分”,可省去递归使用的栈帧空间;